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Abstract— To learn the self-representation matrices/tensor that
encodes the intrinsic structure of the data, existing multiview
self-representation models consider only the multiview features
and, thus, impose equal membership preference across sam-
ples. However, this is inappropriate in real scenarios since
the prior knowledge, e.g., explicit labels, semantic similarities,
and weak-domain cues, can provide useful insights into the
underlying relationship of samples. Based on this observation,
this article proposes a prior knowledge regularized multiview
self-representation (P-MVSR) model, in which the prior knowl-
edge, multiview features, and high-order cross-view correlation
are jointly considered to obtain an accurate self-representation
tensor. The general concept of “prior knowledge” is defined as the
complement of multiview features, and the core of P-MVSR is to
take advantage of the membership preference, which is derived
from the prior knowledge, to purify and refine the discovered
membership of the data. Moreover, P-MVSR adopts the same
optimization procedure to handle different prior knowledge and,
thus, provides a unified framework for weakly supervised clus-
tering and semisupervised classification. Extensive experiments
on real-world databases demonstrate the effectiveness of the
proposed P-MVSR model.

Index Terms—Low-rank tensor representation, multiview,
prior knowledge, self-representation, semisupervised classifica-
tion, tensor Singular Value Decomposition (t-SVD), weakly super-
vised clustering.

I. INTRODUCTION

ANY real-world applications are confronted with mul-

tiview data as a single-view feature cannot reveal the
structure of the data in most cases. For example, in computer
vision, multiple heterogeneous features, such as color, texture,
and shape, are used to characterize the images. Usually, each
view portrays a specific relationship and captures only partial
information of the data. Thus, it is necessary to integrate the
information from multiple views to explore the underlying
relationship of samples [1], [2]. Taking advantage of the
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complementary information beneath different views, the mul-
tiview models have witnessed the performance enhancement
over their single-view counterparts in applications of cluster-
ing [3]-[15], semisupervised classification [8], [10], [16], [17],
and so on.

Among the extensive studies on multiview learning, the self-
representation models [3], [S]-[7], [9], [11]-[13], [18] have
become the mainstream. Existing models can be characterized
by their assumptions on the cross-view correlation and are
roughly classified into two categories.

1) Pairwise Correlation Based.: For example,
Cheng et al. [3] concatenated the representation
matrices of different views along the column direction
as a large representation matrix and then ensured the
sparsity-consistency among all views by imposing
the [p;-norm on the concatenated representation
matrix. Gao et al. [7] devised an indicator to uncover
a common cluster structure agreed by all views.
Meanwhile, the models in [5], [9], and [13] emphasized
the complementarity of multiview features by exploring
the diversity, exclusivity, and nonlinear local manifold
structures from different views, respectively.

2) High-Order Correlation Based: To well capture the
high-order relationship among samples and across dif-
ferent views, the third-order tensor representation is
exploited. Zhang et al. [6] stacked the representa-
tion matrices into a third-order tensor and imposed
a low-rank constraint on this representation tensor.
Relying on the unfolding-based tensor nuclear norm
(u-TNN) [19], the low-rank constraint in [6] suffers
from the loss of representation optimality [11], [12].
To overcome this limitation, the works in [11] and [12]
proposed two optimal strategies to measure the low-rank
property of the self-representation tensor.

While effective, previous methods consider only the mul-
tiview features and their cross-view relationship. In partic-
ular, when calculating the representation coefficients of one
sample, existing algorithms assign equal preference for all the
other samples. This is inappropriate in the setting of weakly
supervised clustering where the membership of samples is
constrained via prior knowledge, i.e., weak-domain cues. The
domain cues are of great importance in correctly detecting
the cluster membership especially when the features are not
enough discriminant [3]. Taking region-based image segmen-
tation as an example, images are segmented into superpixels,
and the superpixels are clustered into homogeneous segments
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considering multiview features [3]. According to the Gestalt
principle of perceptual organization [20], [21], superpixels
within one segment should be spatially connected and com-
pact. However, this requirement cannot be satisfied by existing
multiview clustering algorithms since they overlooked this
valuable prior knowledge. Similar problems may arise in many
real-world applications in which the membership preference
derived from prior knowledge is informative.

Moreover, in the application of semisupervised classifica-
tion, it is also critical to associate the available data labels
with multiview features. In addition, fine-grained semantic
similarities between samples could also provide rich infor-
mation about the underlying class membership [22]. In these
scenarios, the prior information is drawn from explicit data
labels or semantic similarities. To exploit the structure infor-
mation beneath the data labels, Cai et al. [16] proposed a
multimodal model to propagate class labels from the labeled
samples to the unlabeled ones. By investigating the difficulty
of classifying challenging samples, Gong et al. [17] resorted to
curriculum learning to boost the performance of multimodal
learning. Besides, it is feasible to adapt existing multiview
clustering models [4] to the semisupervised scenario [16], [18].
Nevertheless, the adaption always requires tedious works to
define new strategies for label propagation, with the exceptions
of [8] and [10].

Based on these observations, we propose a novel
prior knowledge regularized multiview self-representation
(P-MVSR) model that seamlessly integrates the comprehen-
sive information from prior knowledge, multiview features,
and the high-order cross-view correlation for multiview learn-
ing. As a complement of the multiview features, prior knowl-
edge is used to purify and refine the learned self-representation
tensor. In real-world applications, the prior knowledge may
come from implicit domain cues, explicit data labels,
or semantic similarities, with applications to weakly super-
vised clustering and semisupervised classification. The novelty
and contributions of this article lie in the following aspects.

1) We propose a novel P-MVSR model that takes
advantage of the prior knowledge for learning the
self-representation tensor. To the best of our knowledge,
this is the first model to improve the performance of
multiview learning using extra information, which is
complementary to the multiview features.

2) P-MVSR employs the same optimization procedure for
different prior knowledge and, thus, provides a unified
framework for semisupervised classification and weakly
supervised clustering, relieving the burden of designing
new models for different applications. Besides, the mul-
tiview clustering algorithm in [12] falls into our special
case when no prior knowledge is imposed.

3) We devise an efficient optimization algorithm to solve
P-MVSR via the augmented Lagrangian method with
theoretical convergence analysis. Besides, the introduc-
tion of prior knowledge will not increase the computa-
tion complexity.

4) Within the P-MVSR framework, two illustrative appli-
cations are investigated by exploiting the spatial cues
in region-based image segmentation and the explicit
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labels/implicit semantic similarities in semisupervised
classification. Extensive experiments have demonstrated
the effectiveness and the generalization ability of the
proposed P-MVSR framework.

In the rest of this article, Section II reviews the related
works on multiview learning. Section III introduces the nota-
tions and background knowledge. Section IV elaborates the
proposed P-MVSR model. The applications of P-MVSR are
demonstrated in Section V. Finally, conclusions are drawn
in Section VI.

II. RELATED WORK

Multiview learning [1], [2] aims to learn the intrinsic
structure of data from diverse views, from which the consensus
and/or the complementary information are well-considered.
According to the strategies to integrate multiview features,
we classify multiview learning methods into two general
groups: 1) multiview representation fusion and 2) multiview
representation alignment [2].

The core of multiview representation fusion is to blend
the multiview inputs into a single common representation
shared by all views. Models belonging to this category differ
in the common representation measures and/or fusion schemes.
Karasuyama and Mamitsuka [23] proposed to learn a common
class indicator matrix by unifying the multiple graph Laplacian
matrices with a sparse weighting scheme. To learn the weights
of multiple graphs automatically, Nie ez al. [8] devised an
autoweighting multiple graph learning (AMGL) algorithm to
obtain the common class indicator matrix. Afterward, a mul-
tiview learning model with adaptive neighbors (MLAN) [10]
was introduced to learn the common cluster indicator matrix
and the sample similarity matrix simultaneously. Considering
each view as one modal, the multimodal learning techniques
were employed to find out the hidden pattern from data,
e.g., [16] (AMMSS) and [17] (MMCL).

On the other hand, multiview representation alignment cap-
tures the relationship among different views via feature align-
ment. That is, the individual representations of different views
are aligned through predefined metrics, such as the correla-
tion measurement [24], the similarity and distance measure-
ments [25]-[27], meaningful customized structures [3], [9],
manifold structures [5], [7], [13], [14], [28], and the low-rank
tensor constraints [6], [11], [12], [18]. Representatives of mul-
tiview alignment are the canonical correlation analysis-based
methods [24], [29] and the co-training-/co-regularization-
based methods [25]-[27]. The abovementioned methods suffer
limitations in capturing the high-order cross-view correla-
tion [2]. Inspired by the wide applicability of sparse repre-
sentation [30], [31] and low-rank representation [32], [33],
the self-representation-based methods were extended to the
multiview scenarios. Increasing research works were devel-
oped in this direction, and a large number of multiview
learning algorithms have been proposed based on multi-
view self-representation [3], [S]-[7], [9], [11]-[13], [18].
According to the assumptions of the cross-view correla-
tion, the multiview self-representation models can be sorted
into the pairwise correlation-based methods MLAP [3],
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DiMSC [5], ECMSC [9], and the high-order correlation-based
ones [6], [11], [12].

To exploit the valuable high-order relationship among the
multiview representations, the idea of exploiting low-rank
tensor representation for multiview subspace clustering
(LT-MSC) was introduced in [6]. However, due to the limi-
tation of the u-TNN, LT-MSC suffers losses in capturing the
high-order cross-view correlation. To remedy this situation,
Yin et al. [11] devised a new model by directing using
the self-expressiveness of the third-order tensor (3rdT-MSC).
Alternatively, Xie et al. [12] imposed the tensor singular value
decomposition-based tensor nuclear norm (t-SVD-TNN) on
the rotated representation tensor to thoroughly explore the
high-order cross-view correlation (t-SVD-MSC).

III. NOTATIONS AND PRELIMINARIES

In this section, we first clarify the notations and then
briefly review some preliminary works. Throughout this arti-
cle, we use the calligraphy letters (e.g., Z) to represent tensors.
A blackboard bold letter Z is used as a counterpart of tensor Z,
and they are exploited to represent the original representation
tensor and the rotated representation tensor, respectively. The
two symbols || -||, and || -||@ denote the u-TNN [19] and the
t-SVD-TNN [34], [35], respectively. The uppercase letters
(e.g., Z) are used to indicate matrices. For the detailed intro-
duction on the tensor algebra, please refer to [12], [35], [49].

A. Low-Rank Tensor Representation-Based Multiview
Learning

Traditional multiview learning models [3], [5], [7], [9]
can only capture the pairwise correlation of different views.
To avoid this limitation, a third-order self-representation tensor
can be constructed to simultaneously utilize all views, and its
tensor rank is exploited as a metric for multiview representa-
tion alignment.

A general formulation of low-rank tensor representation-
based multiview learning [?], [6], [11], [12] is given by

min R(Z) + A Ellr
st. ZeQ, E€E (D)

where Z e RV is a third-order tensor constructed by
stacking V representation matrices {Z®)} along the third direc-
tion; Z® € R™" measures the self-representation coefficients
among n samples according to the oth view feature; Q and
E are two compact convex sets; R(Z) is used to induce
the low-rankness of Z; and E is the concatenation of error
matrices, while || - ||, indicates the regularization strategy, e.g.,
the squared Frobenius norm (|| - ||2F) can be used to model
the Gaussian noise and the /5 ;-norm is commonly adopted
to deal with sample-specific corruptions and outliers [32].
Within this framework, Zhang et al. [6] exploited the u-TNN
R(Z) = ||Z||+, which is defined as the sum of the nuclear
norms of the matrices unfolded along all modes [19] to capture
the high-order cross-view correlation.

B. +-SVD-TNN

While effective in many applications, minimizing u-TNN
essentially imposes the low-rank constraint in the matrix

Fig. 1. tSVD of an n; x ny x n3 tensor Z.
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Fig. 2. Rotation of the representation tensor.

SVD-based vector space, resulting in an inadequate represen-
tation of the tensor low-rankness [12]. Besides, u-TNN lacks
a clear physical meaning. To remedy these problems, the work
in [12] exploited the t-SVD-TNN R(Z) = ||Z||g to provide a
more accurate low-rank constraint. As shown in Fig. 1, given
a tensor Z € R™M>*mX13 Jet jts t-SVD be Z = U * S x V',
where  is the transpose operator. Then, U € R"*"1 "3 and
V € R"™*"*" gre orthogonal tensors, and S € R">"2>X"5 g
an f-diagonal tensor [34], [35].

The t-SVD-TNN is defined as the sum of the singular values
of all frontal slices of Z g

ns3 min{ny,ny} n3
1ZIe=D_1Z;Cub)lle= D D ISGiLK] (2
k=1 i=1 k=1

where Z; = fft(Z, ], 3) is obtained by applying fast Fourier
transformation (FFT) on Z along the third dimension, and Z
and Z; are of the same size.

As reported in [12], it is inappropriate to directly impose
t-SVD-TNN on Z due to the intrinsic circulant algebra under-
lying t-SVD-TNN. To fix this problem, the dimensionality of Z
is shifted to obtain an n x V xn rotated representation tensor 2,
as illustrated in Fig. 2.

Remark: The single-view self-representation matrix uncov-
ers the pairwise affinities of samples [32], [36]. By stacking
the self-representation matrices from multiple views, the third-
order self-representation tensor then captures the high-order
relationship among samples and across different views [12].
Conceptually, the t-SVD-TNN imposes a structural constraint
on this self-representation tensor to encourage a consen-
sus low-rank tensor structure beneath the third-order affini-
ties of samples. More specifically, the low-rankness of the
self-representation tensor can be used to reveal the underlying
relationship of samples, somewhat analogous to the low-rank
matrix representation [32]. The only difference is that the
former employs the high-order relationship, while the latter
uses the pairwise relationship.
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From this viewpoint, both u-TNN and t-SVD-TNN can
be used to explore the high-order cross-view correlation.
However, t-SVD-TNN possesses representation optimality due
to the following facts.

1) The rank of the tensor is computationally intractable,
and t-SVD-TNN has been proven to be the tightest
convex relaxation to the /;-norm of the tensor multirank
[37, Th. 2.4.1].

2) Adopting the rotation operation, each frontal slice of
the rotated representation tensor considers the infor-
mation among different samples and different views
in the Fourier domain. This way, t-SVD-TNN well
depicts the complicated relationship between samples
and views [12].

Throughout this article, we resort to t-SVD-TNN as a surrogate
to replace the rank of the representation tensor for computa-
tional tractability.

IV. PROPOSED P-MVSR

In this section, we introduce our P-MVSR model in which
the prior knowledge, for the first time, is used to optimize the
representation tensor in the process of multiview learning.

A. Model of P-MVSR

Suppose that X®) € R%*" (p = 1,2,..., V) is the feature
matrix of the oth view, d, denotes the dimension of feature,
and n is the number of samples. Our P-MVSR model is
presented as

min || Z]le + Al Ell2,
Z0),E

st X® = X<“>(P<“>@ Z(“)) LE®, p=1,2,....V
—_——

Prior
Z=¢zW,z? ..., zW)
E=[EY;ED;. . ;EV] A3)

where || - || is the t-SVD-TNN defined in (2); P® is the prior
knowledge matrix that describes the membership preference of
the oth view, and practically, we can use either coarse-grained
prior knowledge by assuming P = PY) or
fine-grained prior similarity for each specific view; © is the
Hadamard product operator; ¢(-) stacks the representation
matrices {Z®} into a third-order tensor and then shifts it to
obtain an n*V xn rotated representation tensor Z, as illustrated
in Fig. 2; and E is obtained by vertically concatenating the
error matrices { E®}. The underlying assumption beneath this
concatenation operation is that natural corruptions are always
sample-specific, i.e., some data are corrupted, while others
are clean [6]. In this viewpoint, we stack {E®} vertically to
enforce the columns of EM, ..., EY) to have jointly consis-
tent magnitude values across views. Accordingly, the [, j-norm
is used to overwhelm the effect of sample-specific corruptions.

In real-world applications, the prior knowledge may come
from any complementary information of the multiview fea-
tures, e.g., labels, semantic similarities, and domain cues.
It provides a meaningful way to assign specific mem-
bership preferences across samples when calculating the
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self-representation coefficients. As a result, explicit or implicit
cues will have a direct influence on the discovered rela-
tionship of the samples. Within the P-MVSR framework,
we can adapt the prior knowledge matrices { P} for different
applications:
1) For semisupervised classification, the vth prior knowl-
edge matrix P® is defined as

sim@, j), if L =1
@ :
p = Lo, it 5 £ @

T, otherwise

where sim(i, j) is the similarity of samples i and j;
l; i =1,...,n) represents the label of the ith sample
when it is known; and 7 € (0, 1) is a constant, and it
is imposed on the sample pairs when at least one label
is unavailable. In practice, different similarity measures
will be depicted in Section V-A [see (17) and (18)].

2) In weakly supervised clustering, {P®} are specified
by domain cues; two examples of the domain-specific
priors in the application of region-based image seg-
mentation will be introduced in Section V-B [see (19)
and (20)].

3) Without prior knowledge, all entries of {P®} are set
to one, and thus, the clustering model in [12] can be
considered as a special case of P-MVSR.

B. Solution of P-MVSR

Due to the Hadamard product of {P®} and {Z®)}, it is
difficult to solve (3) and is intractable to simultaneously
update variables {Z®} and E. We exploit the augmented
Lagrange multiplier with an alternating direction minimization
scheme [38] to solve (3) for its efficiency and effectiveness.
By introducing V auxiliary variables {D®} and an auxiliary
tensor G, the optimization of (3) can be equivalently trans-
formed into the following optimization problem:

min
Z0) DO E G
st. X© = x© p© + E®
D® =pW oz® y=1,2,...,V
Z2=¢zW,z? ..., zW)
E=[EYE®;. . ;EY)
Z=gG. (5)
The optimal variables {Z®}, (D™}, E, and G can be alter-

nately obtained by minimizing the augmented Lagrange func-
tion of (5) as

191l + Al El2

Lz, DY, E,G; ©1,0,,03) = |Gl + A Ell2

v o0 |
+ 4 Z x®© _x@ pl) _ pe) + 1
2 v=1 p F
2
@(D) o 2
+|DV-PY oz + = +Hz—g+—3 (6)
P P lF
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where @1, ©®,, and O3 are the Lagrange multipliers and p > 0
is the penalty parameter. More specifically, the optimization
of (6) is composed of the following subproblems.

1) Z®)-Subproblem: Fixing other variables except Z®,
the problem reduces to

min [P © 2 = BN + 12 = ¢Vl ()

where B® = D® 4 (@gv)/p) and C® = G® — (@_gv)/p).
Due to the Hadamard product, the optimization procedure is
composed of elementwise operations. Without loss of gener-
ality, we take the optimization of the (i, j)th entry of Z®) as
an example

. 2 2
min (P 2() = B + (2] = ¢l ®
iJ

2
Then, fo? Y= (Pifl;.) * Bi(f} + Ci(f})) J(1+ Pifl;-) ) is obtained by
setting derivative of (8) to zero.
2) D™ -Subproblem: Fixing other variables except D™, (6)
reduces to
min
D)
where T,\") = X® — E® 4+ 0" /p and ") = P® 0 Z®) —
®§“) /p. By setting the derivative of (9) to zero, the closed-
form solution is given by

DO — (X(U)’X(v) + I)—l (X(v)’ Tl(v) + Tz(v))'

‘X(U)D(U) _ TI(U) Hi + HD(U) _ TZ(D) Hi )

(10)

In practice, we can precalculate (X ® X® +T)~! to avoid extra
computation cost.

3) E-Subproblem: Fixing other variables except E and
concatenating V matrices {X® —X® D® +©'"/p} along the
column direction as a temporary matrix W, E can be obtained
by minimizing

! , A
min - [|E=W|% + = Ell2,1. (1)
E 2 p

Equation (11) is a group Lasso problem, and we use the
Lemma 1 (see [39, Lemma 3.1]) to find the solution.
Lemma 1: Given a matrix W € R"™*" and a positive scalar o,
the optimal solution of
1
min S| E = Wiz + ol (12)

is obtained at

IWCE Dl —o N )
. —————WC(, j), ifo <|IWC,
E*(:, j) = W, Dl
0, otherwise.
(13)
4) G-Subproblem: Fixing other variables except G,

the closed-form solution of G can be calculated by optimizing

! 1
rngm;||g||®+5||g—f||% (14)
where F = Z + (O3/p). Equation (14) is the t-SVD-TNN
minimization problem, and it can be solved by using the tensor
tubal-shrinkage operator [12], [40] as

g*zc%(}—)zu*c%(S)*V’ (15)

where F = U xS+ )V and Cv(S) = S * J, in which J €
RV g an f-diagonal tensorﬂwhose diagonal element in the
Fourier domain is 7 (i, i, j) = max{l — V/(p*S(,1i, j)), 0}.

5) Multipliers and Penalty Parameter: The multipliers and
penalty parameter can be updated by

@511)* _ @EU) —i—p(X(D) —_x®pe _ E(D))
@év)* — 95)) —i—p(D(U) _ p® o) Z(v))
01 = 034 p(Z — G)

*

p*=min{f *p, pmax}- (16)

To accelerate the convergence, we employ a continuation
scheme [38] to iteratively update the penalty parameter p until
a maximum value p,,, is achieved, and f is empirically set
to 2.

Afterward, the affinity matrix of samples can be formulated
as A= (1/V)3V_(1ZW|+|Z™'|). The whole procedure of
P-MVSR is summarized in Algorithm 1.

Algorithm 1: P-MVSR

Input: multiview feature matrices: {X®}; parameter:
A; prior knowledge matrices: {P (“)};

Initialize: {Z®)}, {D®)}, E, G, {0}, (0"}, ©;
are initialized to 0, p is initialized to 1073,
Pmax = 1010, =2, € =1077;

1: while not converged do

2. forv=1t V do

3 Update Z® by Eq. (7);

4 Update D® by Eq. (10);

5:  end for

6: Update E by Eq. (13);

7.

8

9

Update G by Eq. (15);
Update {0"}, {0}, @3, and p by Eq. (16);
: Check the convergence conditions
10: max)_ {|X®) — X@DO — O]} <,
1: - max'_ {ID® — P® © Z® |} <e,
122 12 -0lx <e¢,
13: end while
Output: affinity matrix A.

C. Discussion

1) Convergence Analysis: The objective function of
P-MVSR is coupled with respect to the representation tensor 2
since Z is constrained by the t-SVD-TNN, prior knowledge,
and the self-expressive property of each view. We introduce G
and {D®} to make Z separable, resulting in four block
variables. It has been proven that the direct extension of
the augmented Lagrangian multipliers for multiblock convex
optimization is not necessarily convergent [41]. Therefore,
it is infeasible to strictly prove the convergence properties of
P-MVSR. Nevertheless, as verified in pioneer work [6], [12],
the convexity of the Lagrange function could guarantee the
empirical validity of self-representation-based subspace learn-
ing methods to some extent. We will show the empirical
convergence curves of P-MVSR in Section V-C2.
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2) Computation Complexity: The computation cost
of P-MVSR is examined by considering the following
subproblems.

1) The Z®-subproblem for all views costs O(Vn?) oper-

ations.

2) When solving the D -subproblem, the inverse of matrix
can be calculate in advance, and thus, its cost can be
ignored, while the bottleneck lies in the cost of matrix
multiplication, which is of order O(Vn?).

3) The E-subproblem costs O(Vn?) operations per
iteration.

4) Considering the G-subproblem, it takes O(Vn?log(n))
operations to calculate 3-D FFT and inverse FFT and
O(V?2n?) operations for SVD; since n >» V and
log(n) > V, O(V?n?) is negligible compared with
O(Vn?log(n)).

Therefore, the total computation complexity of P-MVSR is
O(iteVn?), where ite is the number of iterations. Compared
with the computation complexity of the method [12], the use of
prior knowledge will not lead to extra computation complexity
since it only contains elementwise operations.

3) Comparison With Other Low-Rank Representation-Based
Multiview Learning Methods: The models in [6] and [12] are
most relevant to our work because all of them first stack the
multiple self-representation matrices into a third-order tensor
and then exploit the low-rank constraint on the representation
tensor to capture the high-order cross-view correlation. How-
ever, they differ from motivations, mathematical formulations,
and the applications.

1) P-MVSR exploits the prior knowledge that is a com-
plement to multiview features to purify and refine the
accuracy of the self-representation tensor, whereas [6]
and [12] focus on designing strategies to encode the
high-order cross-view correlation.

2) In [6] and [12], the low-rank constraints (with different
definitions) are used to optimize the self-representation
tensor. By contrast, the self-representation tensor
in P-MVSR is jointly constrained by the low-rank
constraint and the prior knowledge. Since the prior
knowledge can be considered as a complement of the
multiview features, the proposed P-MVSR will take
advantage of this complementary information for per-
formance enhancement.

3) P-MVSR adopts the same procedure to handle different
prior knowledge and provides a unified framework for
weakly supervised clustering and semisupervised classi-
fication. Meanwhile, [6] and [12] are designed especially
for the clustering tasks.

V. EXPERIMENTS

As the proposed P-MVSR incorporates the prior knowledge
for learning the self-representation tensor, it is expected to
take advantage of the membership preference derived from the
prior knowledge to find an accurate class/cluster membership
from the data. In this section, two illustrative applications are
presented by exploiting different prior knowledge, resulting
in the settings of semisupervised classification and weakly
supervised clustering, respectively.
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A. P-MVSR for Semisupervised Classification

1) Experimental Settings:
a) Setups for P-MVSR: For semisupervised classification,
a straightforward way is to exploit data labels as a hard sim-
ilarity measure. In this setting, (4) results in a coarse-grained
prior PV = ... p® = ... pV) and

1, if =1
PO, j) =10, if L #1;

7, otherwise.

A7)

Practically, the semantic similarities between samples could
be quite complex to provide rich information about the under-
lying class relationship. When being applied to multiview
hashing, the fine-grained ranking technique has shown promis-
ing performance at different semantic levels [22]. Inspired by
this, we introduce a fine-grained prior P_;-“) as

(v) )2
x. ) =X,
CXP(_M)’ it =1
)/ - O
P, j) = f (13)
/ 0, i LA
T, otherwise

where xl-(v) denotes the feature vector of the ith sample from
the vth view, and o/ is set to the average of all feature distance
pairs. Compared with P._MVSR, the core of Py_MVSR is
to extract membership preference from fine-grained semantic
similarities instead of the coarse-grained labels. The selec-
tion of other two parameters 4 and 7 will be examined in
Section V-Cl1. Once the affinity matrix A is obtained using
Algorithm 1, we set —A as the distance matrix of samples, and
the unlabeled samples are classified using the nearest neighbor
classifier.

b) Databases and multiview features: Ten benchmark
databases on handwritten digits (HW), scene (MSRC-vl,
MITIndoor-67, Scene-15), web images (NUS-WIDE), face
(ORL, Yale), animals (AwA), and genetic objects (Caltech101-
20, Caltech101) are chosen for experiments. The summary of
databases and the corresponding multiview features is reported
in Table I. For detail descriptions of the multiview features
extracted from these databases, please refer to [10], [12],
and [42].

c) Competing algorithms: We compare the performance
of P._MVSR and P;,_MVSR with four state-of-the-arts,
i.e.,, AMMSS [16], AMGL [8], MMCL [17], and MLAN [10].
Among them, AMGL, MLAN, P._MVSR, and P;_MVSR can
be applied to both clustering and semisupervised classification,
while AMMSS and MMCL are specialized for the task of
semisupervised classification. For a fair comparison, we test
the performance of competing algorithms over the recom-
mended parameters on all data sets, respectively. Besides,
the ratios of available labeled samples are fixed to the first
10%, 20%, and 30% of all samples, respectively.

2) Classification Accuracy: The best classification results
of all algorithms are reported in Tables II and III. It can
be observed that P._MVSR and P;_MVSR obtain obvious
advantages over its competitors. In particular, the perfor-
mances of AMMSS, MLAN, P._MVSR, and P;_MVSR are

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 14,2020 at 08:30:56 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this jo

XIAO et al.: P-MVSR AND ITS APPLICATIONS

TAB

urnal. Content is final as presented, with the exception of pagination.

LEI

SUMMARY OF THE MULTIVIEW DATABASES USED FOR SEMISUPERVISED CLASSIFICATION

HW MSRC-v1 Caltech101-20 ORL Yale
Content handwritten digits scene generic objects face face
Classes 10 7 20 40 15
Total number 2000 210 2386 400 165
View 1 Fourier of shape(76 d) color moment(24 d) Gabor(48 d) intensity(4096 d) intensity(4096 d)
View 2 profile correlations(216 d) GIST(512 d) wavelet moments(40 d) LBP(3304 d) LBP(3304 d)
View 3 Karhunen-love(64 d) CENTRIST(254 d) CENTRIST(254 d) Gabor(6750 d) Gabor(6750 d)
View 4 pixel averages(240 d) LBP(256 d) HOG(1984 d) - -
View 5 Zernike moment(47 d) - GIST(512 d) - -
View 6 morphologic(6 d) - LBP(928 d) - -
AwA NUS-WIDE Caltech101 MITIndoor-67 Scene-15
Content animals web images generic objects scene scene
Classes 50 25 101 67 15
Total number 30475 3000 8677 5360 4485
View 1 color histogram(2688 d) color histogram(64 d) Gabor(48 d) PHOW (3600 d) PHOW(1800 d)
View 2 local self-similarity(2000 d) color correlation(144 d) wavelet moments(1770 d) PRI-CoLBP(216 d) PRI-CoLBP(1180 d)
View 3 pyramid HOG(252 d) edge direction(73 d) CENTRIST(254 d) CENTRIST(1240 d) CENTRIST(1240 d)
View 4 SIFT(2000 d) wavelet texture(128 d) HOG(1984 d) VGG19(4096 d) -
View 5 color SIFT(2000 d) color moment(225 d) GIST(512 d) - -
View 6 SURF(2000 d) - LBP(928 d) - -
TABLE 11
CLASSIFICATION RESULTS OVER DIFFERENT PERCENTS OF LABELED SAMPLES ON SMALL DATABASES
HW MSRC-v1 Caltech101-20 ORL Yale
10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%
AMMSS 0.9733 0.975 0.9756 | 0.8354 | 0.8691 0.8956 | 0.6834 | 0.7084 0.742 0.8583 | 0.8938 | 0.9071 0.5464 | 0.7481 0.8917
AMGL 0.9065 | 0.9345 | 0.9511 | 0.8039 | 0.8515 | 0.8697 | 0.7696 | 0.8252 | 0.8546 | 0.8722 | 0.9156 | 0.9179 | 0.5133 | 0.8444 | 0.8417
MMCL 0.8965 | 0.9405 | 0.9705 | 0.7524 | 0.7762 | 0.8714 - - - 0.8475 | 0.9075 | 0.9275 | 0.5394 | 0.8424 | 0.8909
MLAN 0.9759 | 09788 | 0.9789 | 0.8258 | 0.8783 | 0.8913 0.847 0.8602 0.882 0.8056 0.85 0.8464 0.62 0.7556 | 0.8083
P._MVSR 0.9783 0.9844 0.9871 0.8783 0.9464 0.9524 0.886 0.9291 0.9321 0.9389 0.9656 0.9821 0.8867 0.9778 0.9833
P¢_MVSR | 09789 | 0.9856 | 0.9871 0.8942 | 0.9583 | 0.9592 | 0.8902 | 0.9334 | 0.9291 0.9611 0.9938 | 0.9857 0.94 0.9778 | 0.9833

1. Red number indicates the best performance; blue number denotes the second best performance.
2. MMCL run out of memory when being applied to Caltech101-20 on a server with 128 GB memory for constructing V' matrices of sizes d, * d, * n simultaneously:

(482 4 40% + 2542 4 1984% + 5122 + 9282) x 2386 * 8./(2%°) = 91.16 GB.

TABLE III
CLASSIFICATION RESULTS OVER DIFFERENT PERCENTS OF LABELED SAMPLES ON LARGE DATABASES

AwWA NUS-WIDE Caltech101 MITIndoor-67 Scene-15

10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%
AMMSS 0.0422 | 0.0983 | 0.1281 0.2047 | 0.2371 0.2605 | 0.4274 | 0.4661 0.5073 | 0.2764 | 0.4388 | 0.5356 | 0.3639 | 0.5117 | 0.5717
AMGL 0.0653 | 0.0819 | 0.0985 | 0.1603 | 0.2032 0.23 0.4393 | 0.5374 | 0.5743 | 0.2913 | 0.3496 | 0.4072 | 0.6336 | 0.6785 | 0.7005

MMCL - - - 0.2413 | 0.3583 0.461 - - - - - - - - -
MLAN 0.0807 | 0.1019 | 0.1212 | 0.2335 | 0.2679 | 0.3011 0.5557 | 0.6087 | 0.6279 0.515 0.5514 | 0.5804 | 0.6846 0.711 0.7281
P._MVSR | 0.2515 | 0.2512 0.25 0.4989 | 0.4983 | 0.5071 0.6859 | 0.7322 | 0.7594 | 0.6815 | 0.6966 | 0.7134 | 0.7489 | 0.7856 | 0.7984
P¢_MVSR | 0.2035 | 0.1924 | 0.2146 | 0.5037 | 0.5075 0.501 0.6372 | 0.6746 | 0.6892 | 0.6438 | 0.6672 | 0.6529 | 0.7437 | 0.7822 0.793

MMCL run out of memory when being applied to AwA, Caltech101, MITIndoor-67, and Scene-15.

comparable on HW, and they have much better performance
than the other two methods; P._MVSR and P;_MVSR out-
perform the best peer algorithms by the margins of 5%—10%
on MSRV-v1, ORL, and Caltech101-20; and they also achieve
more than 10% improvements over the second-best algorithms
on the other six databases. Please also note that the improve-
ments of P._MVSR and P;_MVSR are more obvious and
clearly significant on the large and complicated databases, e.g.,
AwA and NUS-WIDE, showing a potential ability to process
challenging scenarios. The superiorities of the proposed mod-
els own much to the efficient usage of the available data labels
in discovering the underlying affinity of the data set.
Comparing the performance of P;,_MVSR to that of
P._MVSR, we can see that using fine-grained semantic simi-
larities can improve the classification accuracy when the data
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set is small and/or the available data labels are limited. The
performance of Py_MVSR decreases when there are plenty of
labeled data. The reason is that with the increase of data labels,
directly measuring the fine-grained similarities from view
features may not be distinguishable. Several well-designed
semantic similarity measures may overcome this limitation.
Our future work will investigate this.

B. P-MVSR for Weakly Supervised Clustering

In terms of weakly supervised clustering, region-based
image segmentation is chosen as an application example,
in which images are preprocessed to generate superpixels,
and the superpixels are clustered into several segments. The
reasons to employ this application example lie in two folds:
1) the superpixels of natural images usually lie in a low-rank
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subspace [3], [43] and 2) the domain cues can be easily
observed in image segmentation.
1) Experimental Settings:

a) Setups for P-MVSR: Following the Gestalt principle of
perceptual organization [21], we adopt two priors to regularize
the self-representation tensor within the P-MVSR framework.

1) Adjacent Prior: Superpixels that are adjacent within
certain layers have high cluster preference, and we
empirically set the number of adjacent layers to 4 in
all experiments.

2) Spatial Prior: The cluster preference is calculated
according to the spatial distance of two superpixels.

These two priors result in the settings of P,_MVSR and
P;_MVSR, respectively. They are calculated from domain
cues rather than specific view features and, thus, can be shared
among all views, i.e., PO = ... = p"), Mathematically,
the abovementioned two priors are defined as

1, if i and j are adjacent (19)
7, otherwise

Pa(i,j)z[

where 0 < 7 < 1, and

dist(i, j)

CXP\ —— 72—
o;

T, otherwise

, if i and j are adjacent
(20)

Py (i, J)=

where dist(i, j) measures the normalized feature distance
between i and j, oy is fixed to 1 empirically, and 0 < 7 < 1.
Afterward, we set Ps(P; < 7) = 7 to avoid artifacts induced
by stratification. Once the affinity matrix A is formed, we use
the spectral clustering algorithm to obtain the final clustering
result.

b) Databases and competing algorithms: Four segmen-
tation databases are used in the experiments, namely, Berke-
ley segmentation data set 500 (BSDS500), the segmentation
subset of PASCAL visual object classes 2007 (VOC2007),
and Weizmann segmentation data sets with one and two
objects (WSD lobj and WSD 20bj). The corresponding sample
numbers are 500, 632, 100, and 100. In addition, eight
state-of-the-art multiview clustering algorithms are chosen for
comparison, including MLAP [3], DiMSC [5], LT-MSC [6],
AMGL [8], ECMSC [9], MLAN [10], 3rdT-MSC [11], and
t-SVD-MSC [12].

c) Superpixels and multiview features: Since superpixels
generated by different algorithms may capture different visual
patterns, we adopt two typical superpixel segmentation meth-
ods from different categories, i.e., FH [44] with parameters
[0.8, 200, 100] and SLIC [45] with 100 superpixels per image,
to show the generalization ability of our P-MVSR model.
FH tends to produce irregular superpixels, while SLIC always
generates superpixels with similar sizes. To take advantage of
multiview features in capturing human perception, three kinds
of image features (color, texture, and shape) are extracted,
i.e., RGB histogram (8 x 8 x 8§ = 512 d), uniform color
LBP feature (177 d) [46], and the Bag-of-Visual-Words
(BoW) feature by calculating SIFT [47] at each pixel and
then applying the k-means algorithm to generate 100 visual
words (100 d).
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2) Quantitative Evaluation: Following the literature [3],
four standard evaluation metrics are used for comparison: the
probabilistic rand index (PRI), the variation of information
(Vol), the global consistency error (GCE), and the boundary
displacement error (BDE). For PRI, the higher, the better
performance; for the other three metrics, the lower, the better.

Considering BSDS500 and VOC2007, since the number of
ground-truth segments is unknown, we set the segmentation
scale (namely, the number of clusters) to 2, 3, ..., 40, respec-
tively. Then, the segmentation results are compared at an opti-
mal data set scale (ODS) for the entire data set and an optimal
image scale (OIS), following [48]. The quantitative results
of all competing algorithms on BSDS500 and VOC2007 are
reported in Table IV. Overall, our P,_MVSR obtains consis-
tently best performance in most cases, followed by P;_MVSR.
As images in BSDS500 and VOC2007 usually have complex
structures and multiple objects, the proposed priors have a
natural advantage in obtaining spatially compact segments and,
thus, can eliminate the false positive clustering results.

Since images in WSD lobj and WSD 2o0bj capture only one
and two objects, we fix their cluster numbers as two and three
(object segments plus one background segment), respectively.
The ODS values are, therefore, the same as the OIS ones,
and we only report one result for clarity. Table V presents the
quantitative segmentation results of different methods on the
WSD data sets. P,_MVSR and P;_MVSR obtain relatively
better performance. It can be observed that compared with
the results on BSDS500 and VOC2007, the advantage of our
P,_MVSR and P;_MVSR on WSD is not so significant. This
is because images in the WSD databases contain only one or
two object segments, and accordingly, the background segment
is likely to spread over all image borders. Thus, the proposed
(four-layer) adjacent or spatially compact priors become less
effective. By contrast, images in BSDS500 and VOC2007 con-
tain multiple objects, and thus, the priors show superiority.
This observation coincides with human perception, and more
importantly, it confirms the necessity of an appropriate prior
according to specific domain knowledge.

3) Visual Comparison: Examples of the segmented images
are shown in Fig. 3, in which superpixels within one seg-
ment are labeled with the same color. Specifically, we assign
each clustered segment to the label of the most overlapped
ground-truth segment. The visual results demonstrate the
consistency between the clustered segments and the ground
truth. P,_MVSR and P,_MVSR obtain better visual results
compared with their competitors. More importantly, the pos-
itive influence of prior knowledge can be observed. For
instance, in P,_MVSR and P;_MVSR, the superpixels on the
branches of the tree (Image 1), the flowers behind the butterfly
(Image 2), and the face and neck of the lady (Image 6) are bet-
ter grouped compared with peer algorithms. This owns much
to the high cluster preference of spatially adjacent/compact
superpixels using the proposed priors.

C. Model Analysis

1) Parameter Selection: There are two parameters 1 and 7
that should be tuned for P-MVSR. For semisupervised
classification, we empirically set the parameter A in the
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TABLE IV
QUANTITATIVE SEGMENTATION RESULTS ON BSDS500 AND VOC2007

BSDS500 dataset
FH superpixel SLIC superpixel
PRI T VoI | GCE | BDE | PRI T VoI | GCE | BDE |
ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS

MLAP 0.7688 | 0.8142 | 2.2595 | 2.0041 | 0.1538 | 0.1364 | 13.2855 | 10.7898 | 0.7272 | 0.7774 | 2.0579 | 2.2317 | 0.1571 | 0.1473 | 14.818 | 12.1608
DiMSC 0.7541 | 0.789 | 2.3357 | 2.1006 | 0.1481 | 0.1335 | 14.6877 | 12.6122 | 0.7092 | 0.7458 | 2.2235 | 2.3978 | 0.1891 | 0.1781 | 18.3028 | 15.2243
LT-MSC 0.7699 | 0.8169 | 2.2344 | 1.9826 | 0.1496 | 0.1312 | 13.1805 | 10.7273 | 0.7311 | 0.7809 | 2.0398 | 2.232 | 0.1551 | 0.1421 | 14.613 | 12.1204

AMGL 0.7652 | 0.812 | 2.244 | 2.0354 | 0.1442 | 0.1285 | 13.359 11.864 | 0.7386 | 0.7732 | 2.1325 | 2.2473 | 0.1664 | 0.1526 | 14.216 13.54
ECMSC 0.758 | 0.7777 | 2.3799 | 2.1949 | 0.1697 | 0.1472 | 14.4466 | 13.4589 | 0.6932 | 0.7117 | 2.4523 | 2.5233 0.21 0.2049 | 20.263 | 19.4771
MLAN 0.7697 | 0.816 | 2.2575 | 2.0472 | 0.1263 | 0.1167 | 12.8813 | 10.5753 | 0.7278 | 0.7773 | 2.0927 | 2.2503 | 0.1402 | 0.1322 | 13.9612 | 11.7039
3rdT-MSC | 0.7622 | 0.8112 | 2.241 | 2.0573 | 0.1493 | 0.133 13.285 11.044 | 0.7321 | 0.7794 | 2.0252 | 2.2116 | 0.1421 | 0.1309 | 14.732 | 12.208
t-SVD-MSC | 0.7721 | 0.8178 | 2.2204 | 1.9691 | 0.1481 | 0.1302 | 13.1484 | 10.6587 | 0.7363 | 0.784 | 1.9856 | 2.1868 | 0.1399 | 0.1287 | 14.4242 | 11.9035
P._MVSR | 0.7922 | 0.8339 | 2.0896 | 1.8139 | 0.1262 | 0.1085 | 12.6249 | 9.9104 | 0.7556 | 0.8151 | 1.8929 | 2.1922 | 0.131 0.1125 | 13.6725 | 10.4663
P,_MVSR | 0.7762 | 0.8214 | 2.0986 | 1.8221 | 0.1443 | 0.1198 | 13.1257 | 10.5546 | 0.7544 | 0.8045 | 1.9496 | 2.248 0.1489 | 0.1231 13.713 11.0676

VOC2007 dataset
FH superpixel SLIC superpixel
PRI T Vol | GCE | BDE | PRI T Vol | GCE | BDE |
ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS

MLAP 0.5839 | 0.6441 | 1.6856 | 1.659 0.19 | 0.1629 | 26.1116 | 21.5948 | 0.5605 | 0.6069 | 1.7481 | 1.7274 | 0.248 | 0.2105 | 27.7894 | 23.7012
DiMSC 0.5679 | 0.6358 | 1.6949 | 1.6962 | 0.2135 | 0.18 | 26.3435 | 22.1248 | 0.5585 | 0.611 1.727 | 1.7102 | 0.2589 | 0.2138 | 29.1868 | 24.6845
LT-MSC 0.5809 | 0.6472 | 1.6813 | 1.6516 | 0.1871 | 0.1586 | 25.967 | 21.6521 | 0.5669 | 0.6163 | 1.7223 | 1.6964 | 0.236 | 0.2008 | 27.6794 | 23.3177

AMGL 0.5473 | 0.6185 | 1.7018 | 1.7728 | 0.1982 | 0.1835 | 27.8274 | 22.6147 | 0.5562 | 0.6065 | 1.902 | 1.8264 | 0.24431 | 0.2208 | 28.2352 | 24.56
ECMSC 0.5571 | 0.609 | 1.7189 | 1.8044 | 0.1916 | 0.1937 | 26.9058 | 22.6427 | 0.5492 | 0.5985 | 1.7063 | 1.6537 | 0.255 | 0.2364 | 28.3218 | 25.5448
MLAN 0.5666 | 0.6389 | 1.7001 | 1.6536 | 0.1754 | 0.1441 | 25.8629 | 20.6554 | 0.5675 | 0.6277 | 1.6924 | 1.6493 | 0.2371 | 0.1967 | 26.995 | 23.0864
3rdT-MSC | 0.5629 | 0.6392 | 1.7422 | 1.6883 | 0.1828 | 0.1534 | 26.0732 | 21.092 | 0.5702 | 0.6297 | 1.7102 | 1.6932 | 0.2267 | 0.1874 | 27.01 23.1661
t-SVD-MSC | 0.5693 | 0.6483 | 1.7207 | 1.6749 | 0.1744 | 0.147 | 25.7832 | 20.9522 | 0.5692 | 0.6269 | 1.705 1.692 | 02212 | 0.1828 | 27.0032 | 23.0417
P,_MVSR | 0.5893 | 0.652 | 1.6807 | 1.6249 | 0.1744 | 0.143 | 25.0788 | 19.9522 | 0.5744 | 0.6301 | 1.6863 | 1.6448 | 0.2135 | 0.1797 | 26.8476 | 22.1326
Ps_MVSR | 0.5877 | 0.6559 | 1.665 1.614 | 0.1932 | 0.1508 | 25.4342 | 20.9417 | 0.5723 | 0.629 | 1.6931 | 1.652 | 0.2142 | 0.1809 | 26.9573 | 22.298

ODS: optimal dataset scale; OIS: optimal image scale.
TABLE V
QUANTITATIVE SEGMENTATION RESULTS ON WSD DATABASES
WSD 1obj dataset WSD 20bj dataset
FH superpixel SLIC superpixel FH superpixel SLIC superpixel

PRIT | Vol |[GCE] [ BDEJ| | PRIT | Vol ] |GCE] | BDE| || PRIT | Vol | | GCE] | BDE ] | PRIT | Vol | | GCE | | BDE |

MLAP 0.7071 | 1.0708 | 0.193 18.6651 | 0.6862 | 1.1072 | 0.1889 | 20.1497 || 0.7461 | 1.0712 | 0.1371 | 12.0187 | 0.5821 | 1.5437 | 0.1694 15.846
DiMSC 0.6893 | 1.0998 | 0.19 | 21.5995 | 0.6247 | 1.294 | 0.2326 | 27.1605 || 0.7277 | 1.0962 | 0.1392 | 14.8961 | 0.5902 | 1.5484 | 0.1848 | 17.4758
LT-MSC 0.7189 | 1.0235 | 0.1785 | 18.3171 | 0.5965 | 1.4895 | 0.1628 | 16.765 0.7458 | 1.0634 | 0.1344 | 11.9898 | 0.5965 | 1.4895 | 0.1628 | 15.765
AMGL 0.7317 | 0.9767 | 0.1662 | 19.9213 | 0.6451 | 1.1116 | 0.1956 | 24.7861 || 0.7446 | 1.0798 | 0.1436 | 13.8742 | 0.6017 | 1.4884 | 0.1712 | 18.2203
ECMSC 0.675 | 1.1883 | 0.2043 | 22.9323 | 0.5964 | 1.4557 | 0.2321 | 30.6716 || 0.7244 | 1.1046 | 0.1609 18.1 0.5507 | 1.7047 | 0.205 | 24.3847
MLAN 0.7296 | 0.9606 | 0.1677 | 15.5204 | 0.6016 | 1.4255 | 0.1587 | 17.6974 || 0.7456 | 1.0162 | 0.122 | 11.5636 | 0.6016 | 1.4255 | 0.1487 | 17.6974
3rdT-MSC | 0.7301 | 0.9822 | 0.1795 | 19.244 | 0.6214 | 1.4352 | 0.1801 | 17.8922 || 0.7478 | 1.0515 | 0.1241 | 14.775 | 0.6122 | 1.438 | 0.1628 | 17.1225
t-SVD-MSC | 0.7291 | 0.9873 | 0.1625 | 20.2782 | 0.6151 | 1.4296 | 0.1604 | 16.0054 || 0.7431 | 1.0214 | 0.1233 | 14.0257 | 0.6151 | 1.4296 | 0.1604 | 16.0054
P,_MVSR | 0.7396 | 0.9795 | 0.1779 | 16.0238 | 0.6891 | 1.1055 | 0.1988 | 20.8693 || 0.7521 | 1.0129 | 0.1264 | 11.2104 | 0.6311 | 1.3546 | 0.1512 | 14.4838
Ps_MVSR | 0.7322 | 0.9845 | 0.1788 1597 | 0.6635 | 1.1124 | 0.1887 | 19.2445 || 0.7535 | 1.0408 | 0.1204 | 11.0922 | 0.6288 | 1.3652 | 0.1526 | 14.6038

range [0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7], and 7 is
selected from (0, 1) with step 0.1, and P._MVSR is cho-
sen for analysis. As two illustrative examples, the classifi-
cation performance of P._MVSR over parameters A and t
is reported on the Caltech101-20 and Yale data sets with
10% labeled samples, respectively. We can observe from
Fig. 4 that although the parameters A and 7 play important
roles on the classification accuracy, the results of P.,_MVSR
are still stable over local ranges of parameters. In terms of
Caltech101-20, the recommended values of 4 and 7 locate
within the ranges [0,01, 0.05] and [0.4, 0.9], respectively; for
Yale, we suggest to choose A from [0.3, 0.7] and 7z from
the range [0.2, 0.8]. The optimal values of 4 on Yale are
larger than those on Caltech101-20. This is because the Yale
data set contains complicated variations, such as illumination
changes and occlusions. By setting a relatively large value
of 4, our P._MVSR model will greatly penalize the error term
to achieve better performance. This observation is helpful to
tune the parameters of P._MVSR.

In the application of weakly supervised clustering, 4 is
empirically selected from [1.1, 1.3, ..., 2.3], and 7 is chosen
from [0, 0.2, 0.4, 0.8] for P,_ MVSR and P,_MVSR. One
example of the performance of P,_MVSR over model para-
meters on BSDS500 is given in Fig. 5. As can been seen, for
image segmentation, the performance of P-MVSR is relatively
insensitive to the choice of 1 in the range [1.1, 1.3, ..., 2.3],
while 7 is recommended to set to 0.2.

2) Empirical Convergence: To examine the convergence of
P-MVSR in real scenarios, we define three residuals (i.e., the
stopping criterion in lines 10-12 in Algorithm 1)

) %
Reconstruction error : r1 :malx{||X(“) —XDW_E®|
o

Match error 1: 72 = m‘élx{HD(") — PO o ZO| )
na
Match error 2 : 713 = || 2 — Gllco-

Then, we plot the empirical convergence curves of
P._MVSR on one large database Caltech101 and one small
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Fig. 4. Sensitivity analysis of parameters in P._MVSR on Caltech101-20 and
Yale data sets with 10% labeled samples.

database Yale as two illustrative examples in Fig. 6. The
three residuals yield stable values after 50 iterations, show-
ing that P._MVSR converges well in real applications. The
average convergence curves of P._MVSR and competing
algorithms are plotted in Fig. 7. As can be seen, AMMSS and
AMGL generally converge within ten iterations, while MLAN
and P._MVSR obtain stable solutions after 30-50 iterations.
MMCL converges within 20 iterations on the Yale database
and runs out of memory on the Caltech101 database. It can be
observed that P._MVSR costs most iterations before conver-
gence. This is because the optimization function of P._MVSR
has relatively more constraints compared with the competitors.

3) Runtime Comparison: Theoretically, the computation
complexity of P-MVSR is O(iteVn®). That is, the run-
time of P-MVSR relates to the number of samples, views,
and real iteration numbers. To compare the empirical run-
time, all algorithms are implemented using MATLAB and
tested on a workstation with Intel Core i9-9920X proces-
sor and Ubuntu system. The empirical runtime is reported
in Tables VI and VIII, and the theoretical complexity is
presented for reference. For semisupervised classification,
AMMSS is the most efficient algorithm, and MMCL is

Visual comparisons of different algorithms on BSDS500 with five clustered segments per image using FH superpixels.

1.96
194
192
19

1.88
1.86
184
182

18

103

102

10.1

Sensitivity analysis of parameters

Caltech101 Yale

Residuals
Residuals

10 20 30 40 50 60 70 80
Number of Iterations

10 20 30 40 50 60 70 80
Number of Iterations

Fig. 6. Empirical convergence curves of P._MVSR on Caltech101 and Yale
databases.

the most time-consuming one. The main cost of P-MVSR
lies in the operations in the matrix multiplication and the
t-SVD-TNN minimization subproblem. To solve computa-
tion bottleneck, fast tensor learning methods are needed.
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TABLE VI
EMPIRICAL RUNTIME (SECONDS) AND COMPUTATION COMPLEXITY OF DIFFERENT ALGORITHMS ON SEMISUPERVISED CLASSIFICATION

11

HW | MSRC-v1 | Caltech101-20 | ORL | Yale AwA | NUE-WIDE | Caltech101 | MITIndoor-67 | Scene-15 | Complexity
AMMSS | 8.54 0.08 22.96 1.08 | 0.34 | 398.67 19.06 277.63 166.56 142.68 | O(iteVn?)
AMGL 18.75 0.19 48.62 2.53 | 097 | 985.67 46.91 557.92 367.92 33142 | O(iteVn?®)
MMCL | 1123.57 9.32 2672.1 88.95 | 47.39 | 33167.3 2129.62 17889.4 12365.8 8869.52 | O(iteVn?)
MLAN | 47.83 0.39 89.76 497 | 2.21 |2012.86 108.76 1224.83 872.75 642.27 O(iten®)
P-MVSR | 199.82 1.67 451.74 1522 | 8.26 | 6227.68 | 406.234 4789.65 3785.78 1878.59 | O(iteVn®)
TABLE VII

ABLATION STUDY ON THE PRIOR KNOWLEDGE AND T-SVD-TNN MODULES FOR SEMISUPERVISED CLASSIFICATION

HW | MSRC-v1 | Caltech101-20 | ORL Yale AwA | NUE-WIDE | Caltech101 | MITIndoor-67 | Scene-15
no Prior 0.965 0.836 0.8632 0.8944 | 0.8533 | 0.1726 0.3224 0.3321 0.3427 0.5972
concatenation | 0.9606 0.8413 0.8288 0.9021 | 0.8056 | 0.1022 0.3663 0.4127 0.3725 0.5763
u-TNN 0.9661 0.8677 0.8688 0.9139 | 0.825 | 0.1642 0.3852 0.4664 0.4333 0.6228
P._MVSR | 0.9783 0.8783 0.886 0.9389 | 0.8867 | 0.2515 0.4989 0.6859 0.6815 0.7489
P;_MVSR | 0.9789 0.8942 0.8902 0.9611 | 094 | 0.2035 0.5037 0.6372 0.6438 0.7437
Caltech101 Yale TABLE VIII

N
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Fig. 7. Average empirical convergence curves of different algorithms on
Caltech101 and Yale databases.

For example, Wu e al. [49] proposed an essential tensor
learning method for multiview clustering to avoid matrix mul-
tiplication. To further reduce the computation cost of low-rank
tensor minimization, we can resort to tensor factorization [50]
instead of t-SVD-TNN.

When being applied to image segmentation, the aver-
age execution time over the whole database is recorded
for each algorithm. Since the runtime is closely related
to the number of samples, different superpixel segmenta-
tion methods will have a direct influence on the empiri-
cal runtime. Specifically, FH generates 200-450 superpix-
els on BSDS200/VOC2007 and around 150-300 superpixels
on WSD databases. Meanwhile, SLIC consistently produces
100 superpixels on all databases. As a result, the runtime of
competing algorithms varies dramatically when using the FH
superpixel, and it is relatively stable when the SLIC superpixel
is adopted.

4) Ablation Study:

a) Benefits from prior knowledge and t-SVD-TNN: To
start with, we present an ablation study to show the influ-
ence of the prior knowledge module and the effectiveness of
t-SVD-TNN. Specifically, when no prior knowledge is
imposed, the method in [12] is subsumed into the P-MVSR
framework; if the t-SVD-TNN module is ablated, we use two
schemes to deal with the cross-view relationship: 1) con-
catenating all view features into a large feature matrix and
2) stacking the representation coefficient matrices and seeking
their consensus via u-TNN. These two strategies are denoted
by “concatenation” and “u-TNN” in Tables VII and IX.
For semisupervised classification, we conduct experiments

AVERAGE EMPIRICAL RUNTIME (SECONDS) AND COMPUTATION
COMPLEXITY OF DIFFERENT ALGORITHMS
ON IMAGE SEGMENTATION

FH SLIC
BSDS | VOC | WSD | BSDS | VOC | WSD | Complexity

MLAP  |3.9227[3.89241.5998 [0.5151| 0.515 |0.5311| O(iteVn®)
DiMSC | 0.7992]0.8286 | 0.307 |0.1059 [0.1366 | 0.1232| O (iteVn>)
LT-MSC |[2.1872[2.1085]0.6827[0.3086 [0.2932[0.3184 | O (iteV n?)
AMGL | 0.69470.7835] 0.251 [0.0919[0.09930.0944 | O (iteV n?)
ECMSC | 6.82236.7076|2.6611|0.8429[0.8384 ] 0.8456 | O (iteV n?)
MLAN | 0.3257[0.2188]0.0198 [0.1296 [0.1519]0.1342| O(iten®)
3rdT-MSC |1.9087 | 1.8278]0.7607| 0.28 |0.2582[0.2951| O (iteVn®)
-SVD-MSC | 1.6387 | 1.74430.6783 [0.2579 0.2586 | 0.2625 | O (iteV ")
P-MVSR | 1.6452| 1.789 | 0.7743]0.2594 [ 0.2705 [ 0.2741| O (iteV n®)

using 10% labeled samples on all databases. As to image
segmentation, the results on the BSDS500 are reported. In
both tests, the performance enhancement of P-MVSR models
benefits from the joint consideration of the prior knowledge
and t-SVD-TNN, showing the superiority of the proposed
P-MVSR framework.

To further provide an intuitive illustration of the effective-
ness of the two modules, we visualize the discovered affinity
of samples using every single view and all views without
and with prior knowledge, respectively. Following the method
in [51], we adopt t-distributed stochastic neighbor embedding
(t-SNE) [52] to show the data structure of MSRC-v1 in Fig. 8.
We can see that: 1) the underlying class structures cannot be
well discovered using only a single view [see Fig. 8(a)—(d)];
2) integrating the information from multiview features via
t-SVD-TNN, the affinity matrices can well preserve the local
structures of different classes [see Fig. 8(e) and (f)]; and
3) compared with Fig. 8(e), a more compact and accurate class
structure is observed in Fig. 8(f), demonstrating the advantage
of using prior knowledge in learning the affinity matrix.

b) Multiview features integration: Given features extrac-
ted from multiple sources, P-MVSR engages in designing an
integration scheme to obtain enhanced performance. Nowa-
days, the development of deep learning models makes it
possible to extract enhanced features by taking advantage
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12
TABLE IX
ABLATION STUDY ON THE PRIOR KNOWLEDGE AND
T-SVD-TNN MODULES FOR CLUSTERING
PRI Vol | GCE | BDE |
ODS | OIS | ODS | OIS | ODS | OIS ODS OIS
no Prior 0.7363 | 0.784 | 1.9856 | 2.1868 | 0.1399 | 0.1287 | 14.4242 | 11.9035
concatenation | 0.7375 | 0.7902 | 1.9722 | 2.2089 | 0.1399 | 0.1224 | 14.082 | 11.5422
u-TNN 0.7445 | 0.7951 | 1.9652 | 2.2012 | 0.1376 | 0.1184 | 13.823 | 11.224
P,_MVSR |0.7556 | 0.8151 | 1.8929 | 2.1922 | 0.131 | 0.1125 | 13.6725 | 10.4663
Ps_MVSR |0.7544 | 0.8045 | 1.9496 | 2.248 | 0.1489 | 0.1231 | 13.713 | 11.0676
Affinity using view 1: color moment Affinity using view 2: GIST
(a) (b)
Affinity using view 3: CENTRIST Affinity using view 4: LBP
- rf: ; :;s;:': . :-',-. '.\‘
P
s
@
Affinity using all views without prior Affinity using all views with prior
-
AR . .
. % )
.::’,E“ s
o
(©) ()
Fig. 8. Visualization of the affinity matrices of MSRC-v1 using each single

view and all views without and with prior knowledge via t-SNE.

TABLE X

CLASSIFICATION RESULTS OVER DIFFERENT KINDS OF
FEATURES ON THE CALTECH101-20 DATABASE

Hand-crafted feature Deep feature
Best-view P-MVSR Gain Best-view P-MVSR  Gain
10% 0.6769 0.886 30.89% 0.8962 0.9847  9.88%
20% 0.7611 0.9291  22.07% 0.9364 0.9953  6.29%
30% 0.7974 0.9321 16.89% 0.944 0.9917  5.05%

of the network structure and plenty of samples [53], [54].
A question naturally arises as follows. Will the proposed
P-MVSR model work when features from single views are
already well-performed? To answer this question, we extract
deep features from three representative networks,' i.e., Incep-
tionV3 (mixed10 layer), ResNet-50 (activation-49 layer), and
VGGI19 (fc2 layer). All deep models are trained on ImageNet.
Since these models have different structures, we consider the
extracted features as three heterogeneous features. We use
the Caltech101-20 database as an illustrative example and
record the results from the best-performing single view,’
P-MVSR, and their performance gains, respectively, in

Thttps://keras.io/zh/applications/
2By extending the single-view self-representation model in [32] to the
semisupervised scenario.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Table X. Although a single deep feature shows promising
performance, considerable improvements are witnessed by
integrating the features from multiple deep models. This vali-
dates the general assumption on integrating multiview features
for performance enhancement.

VI. CONCLUSION

This article proposed a P-MVSR model to take advantage of
the prior knowledge in discovering the underlying relationship
of samples. Specifically, we considered the prior knowledge,
multiview features, and the high-order cross-view correlation
simultaneously to learn an accurate self-representation tensor.
Taking the valuable prior information as a complement to
the multiview features, P-MVSR has shown the superiority
compared with existing multiview learning models. Extensive
experiments on semisupervised classification and region-based
image segmentation have demonstrated the effectiveness and
the generalization ability of our P-MVSR model by investi-
gating different settings of prior knowledge.

As P-MVSR generalizes different kinds of side information,
e.g., explicit labels, semantic similarities, weak-domain cues,
as the prior knowledge, and uses the prior knowledge to
guide the learning procedure, it opens up new opportunities
of developing powerful multiview self-representation models.
In the future, we can investigate the application of P-MVSR
in constrained clustering where the task-dependent constraints
provide valuable information on the relationship of data.
In addition, inspired by the work in [55]-[57], it is worth
exploring the fine-grained prior knowledge from the initial
coarse priors for performance enhancement.
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